SKU: 00C0K21

100G QSFP28 Single Lambda LR1 Transceiver Hot Pluggable, Duplex LC, 1311nm EML, SMF 10KM, DDM, C-Temp

Part Number: FQ2S-K7-C13-10D

Overview

FQ2S-K7-C13-10D is a QSFP28 Single Lambda transceiver for 100GbE applications especially in Datacom, Data Center & Storage networks applications. It works based on the 100G Single Lambda MSA 100G-LR1 Standard with the typical center wavelength 1311nm. The transceiver incorporates one channel optical signal of 100Gbps(PAM4) from four channels electrical signal of 25Gbps(NRZ) and vice versa up to SMF 10km optical links.

Applications

• 100GBASE Ethernet

TEL+886-2-2898-3830

- Data Centers Switch Interconnect
- Server and Storage Area Network Interconnect

Features

- Compliant with SFF-8665 QSFP28 MSA
- Compliant with IEEE 802.3bm CAUI-4 Interface
- Compatible with 100GBASE-LR1
- Signal Conversion between 53.125GBd PAM4 optical signal and 25.78125Gbps NRZ electrical signal with DSP Gear Box
- Built in Tx CDR and Rx CDR
- Inbuild KP4 FEC
- Hot Pluggable QSFP28 footprint
- CWDM 1311nm EML transmitter
- Duplex LC connector
- 2-wire interface for management and diagnostic monitor compliant with SFF-8636
- Single 3.3V power supply
- Operating Temperature 0~70°C
- Link distance 10km over SM fiber with FEC
- Maximum Power consumption 4.5W
- RoHS compliant

Sales@Ficer.com

1

SKU: 00C0K21

Laser Safety

- This is a Class 1 Laser Product complies with 21 CFR 1040.10 and 1040.11 except for conformance with IEC 60825-1 Ed. 3., as described in Laser Notice No. 56, dated May 8, 2019.
- Caution: Use of control or adjustments or performance of procedure other than those specified herein may result in hazardous radiation exposure.

Absolute Maximum Ratings

Parameters	Symbol	Min.	Max.	Unit
Storage Temperature	Тѕт	-40	+85	°C
Storage Relative Humidity	RH	5	95	%
Supply Voltage	Vcc	-0.5	+3.6	V

Recommended Operating Conditions

Parameters	Symbol	Min.	Тур.	Max.	Unit
Case Operating Temperature	Тор	0	-	+70	°C
Supply Voltage	Vcc	+3.13	+3.3	+3.47	V
Electrical Data Rate, per Lane (NRZ)	DRELE		25.78125		Gb/s
Optical Data Rate (PAM4)	DROPT		53.125		GBd
Data Rate Accuracy	ΔDR	-100		+100	ppm
Bit Error Rate (Pre-FEC)	BERPRE			2.4x10 ⁻⁴	
Bit Error Rate (Post-FEC)	BERPOST			1x10 ⁻¹²	
Supply Current	Icc			1360	mA
Power Consumption	Р			4.5	W
Transceiver Power-on Initialization Time				2000	ms
Control Input Voltage High	Vih	2.0		Vcc+0.3	V
Control Input Voltage Low	VIL	-0.3		0.8	V
Control Output Voltage High	Vон	Vcc-0.5		Vcc+0.3	V
Control Output Voltage Low	Vol	0		0.4	V

Sales@Ficer.com

TEL+886-2-2898-3830

SKU: 00C0K21

Transmitter Electro-optical Characteristics

 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note	
Operating Data Rate	DR		103.125	106.25	Gb/s		
Optical Center Wavelength		λc	1304.5	1311	1317.5	nm	
Average Launch Power		Pavg	-1.4		+4.5	dBm	1
Optical Modulation Amplitud	le (OMA)	Рома	+0.7		+4.7	dBm	
Launch Power in	ER < 4.5dB	OMA-	-0.7			dBm	
OMAouter minus TDECQ	ER > 4.5dB.	TDECQ	-0.6			dBm	
Transmitter and Dispersion	Eye Closure	TDECQ			3.4	dB	2
Spectral Width (-20dB)		Δλ			1	nm	
Side Mode Suppression Ra	Side Mode Suppression Ratio		30			dB	
Optical Extinction Ratio		ER	3.5			dB	
Relative Intensity Noise	RIN			-136	dB/Hz		
Average Launch Power OF	Poff			-15	dBm		
Optical Return Loss Toleran	ORLT			15.6	dB		
Transmitter Reflectance	R _{TX}			-26	dB		
Input Differential Impedance	ZIN	90	100	110	Ω		
Differential Data Input Volta	VIN-PP			900	mVpp		
Common Mode Voltage (Vc	TP1	-350		2850	mV	3	

Note1: Average launch power, each lane (min) is informative and not the principal indicator of signal strength. A transmitter with launch power below this value cannot be compliant; however, a value above this does not ensure compliance.

Sales@Ficer.com

Note2: TDECQ is specified and measured as per IEEE802.3.cm Clause 150.8.5.

Note3: DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.

TEL+886-2-2898-3830

SKU: 00C0K21

Receiver Electro-optical Characteristics

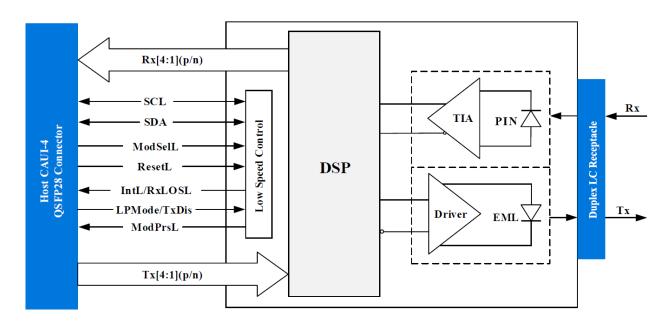
 V_{CC} = 3.13V to 3.47V, T_{OP} = 0 °C to 70 °C

Parameters	Symbol	Min.	Тур.	Max.	Unit	Note		
Operating Data Rate	DR		103.125	106.25	Gb/s			
Optical Center Wavelength	λc	1304.5	1311	1317.5	nm			
Damage Threshold	D тн	+5.5			dBm	1		
Average Receive Power	Prx-avg	-7.7		+4.5	dBm			
Receiver Power (OMA)	Prx-ома			+4.7	dBm			
Receiver Sensitivity (OMA)	SENoma	Max	(-6.1, SEC	Q-7.5)	dBm	2		
Stressed Receiver Sensitivity (OMA)	SRSoma			-4.1	dBm			
Receiver Reflectance	R _{RX}			-26	dB			
LOS De-Assert	LOSD			-10	dBm			
LOS Assert	LOSA	-26		-12	dBm			
LOS Hysteresis	LOSHY	0.5			dB			
Output Differential Impedance	Zout	90	100	110	Ω			
Differential Data Output Voltage	Vout-pp			900	mVpp			
Common Mode Voltage (Vcm)	TP4	-350		2850	mV	3		
Conditions of Stress Receiver Sensitivity Test (Note.4)								
Stress Eye Closure for PAM4 (SECQ)			3.4		dB			
SECQ – 10*log10(Ceq)				3.4	dB			

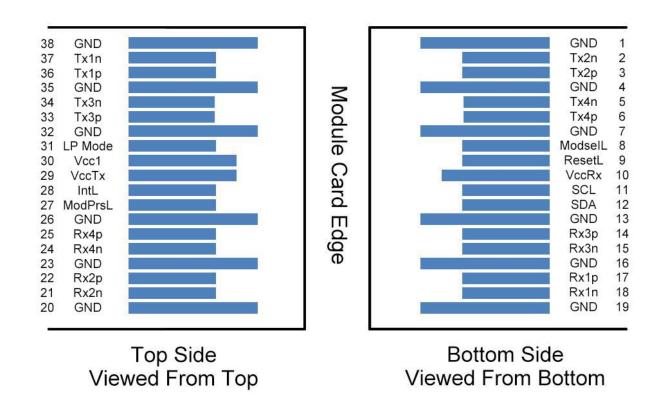
Note1: The receiver shall be able to tolerate, without damage, continuous exposure to a modulated optical input signal having this power level on one lane. The receiver does not have to operate correctly at this input power.

Note2: Sensitivity is specified at 2.4x10⁻⁴ BER with PRBS31Q.

Note3: DC common mode voltage generated by the host. Specification includes effects of ground offset voltage.


Note4: These test conditions are for measuring stressed receiver sensitivity. They are not characteristics of the receiver.

Sales@Ficer.com


TEL+886-2-2898-3830

SKU: 00C0K21

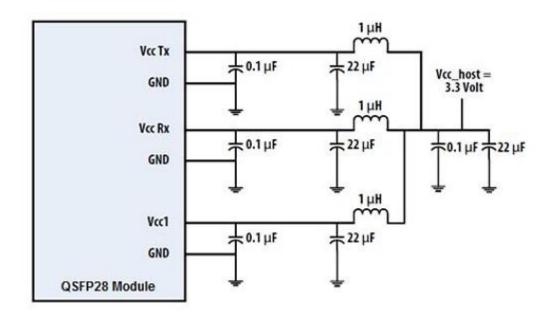
Transceiver Block Diagram

Pin Assignment

SKU: 00C0K21

Pin Description

Pin	Logic	Name	Function / Description		
1		GND	Module Ground		
2	CML-I	Tx2n	Transmitter Inverted Data Input		
3	CML-I	Tx2p	Transmitter Non-Inverted Data Input		
4		GND	Module Ground		
5	CML-I	Tx4n	Transmitter Inverted Data Input		
6	CML-I	Tx4p	Transmitter Non-Inverted Data Input		
7		GND	Module Ground		
8	LVTLL-I	ModSelL	Module Select		
9	LVTLL-I	ResetL	Module Reset		
10		VccRx	+3.3V Power Supply Receiver		
11	LVCMOS-I/O	SCL	2-Wire Serial Interface Clock		
12	LVCMOS-I/O	SDA	2-Wire Serial Interface Data		
13		GND	Module Ground		
14	CML-O	Rx3p	Receiver Non-Inverted Data Output		
15	CML-O	Rx3n	Receiver Inverted Data Output		
16		GND	Module Ground		
17	CML-O	Rx1p	Receiver Non-Inverted Data Output		
18	CML-O	Rx1n	Receiver Inverted Data Output		
19		GND	Module Ground		
20		GND	Module Ground		
21	CML-O	Rx2n	Receiver Inverted Data Output		
22	CML-O	Rx2p	Receiver Non-Inverted Data Output		
23		GND	Module Ground		
24	CML-O	Rx4n	Receiver Inverted Data Output		
25	CML-O	Rx4p	Receiver Non-Inverted Data Output		
26		GND	Module Ground		
27	LVTLL-O	ModPrsL	Module Present		
28	LVTLL-O	IntL	Interrupt		
29		VccTx	+3.3V Power Supply Transmitter		
30		Vcc1	+3.3V Power Supply		
31	LVTLL-I	LPMode	Low Power Mode		
32		GND	Module Ground		
33	CML-I	Тх3р	Transmitter Non-Inverted Data Input		


SKU: 00C0K21

34	CML-I	Tx3n	Transmitter Inverted Data Input
35		GND	Module Ground
36	CML-I	Tx1p	Transmitter Non-Inverted Data Input
37	CML-I	Tx1n	Transmitter Inverted Data Input
38		GND	Module Ground

Note1: GND is the symbol for signal and supply (power) common for QSFP28 modules. All are common within the QSFP28 module and all module voltages are referenced to this potential unless otherwise noted. Connect these directly to the host board signal common ground lane.

Note2: VccRx, Vcc1 and VccTx are the receiver and transmitter power suppliers and shall be applied concurrently. Recommended host board power supply filtering is shown below. Vcc Rx, Vcc1 and Vcc Tx may be internally connected within the QSFP28 transceiver module in any combination. The connector pins are each rated for a maximum current of 1000mA.

Recommended Power Supply Filter

TEL+886-2-2898-3830

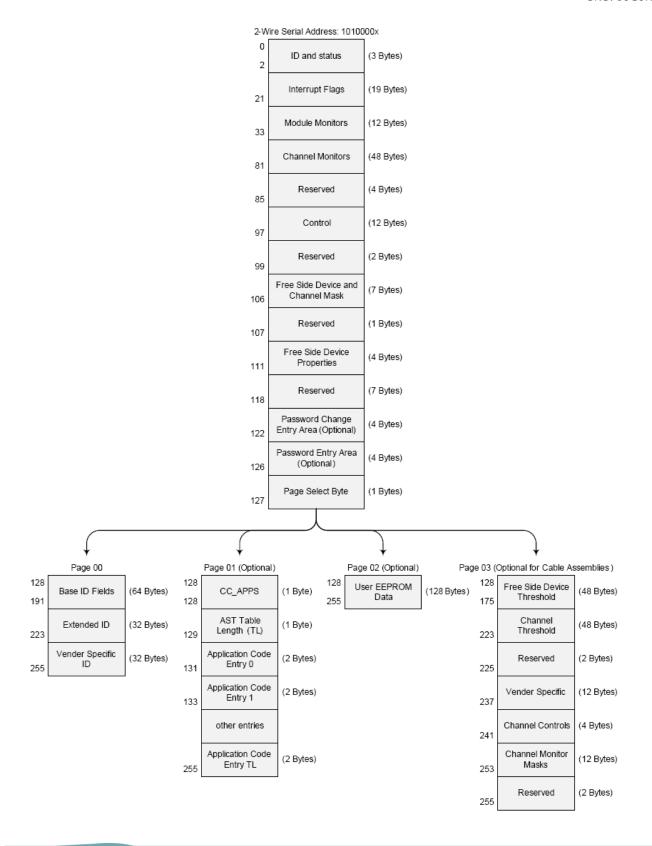
Sales@Ficer.com

SKU: 00C0K21

Digital Diagnostic Functions

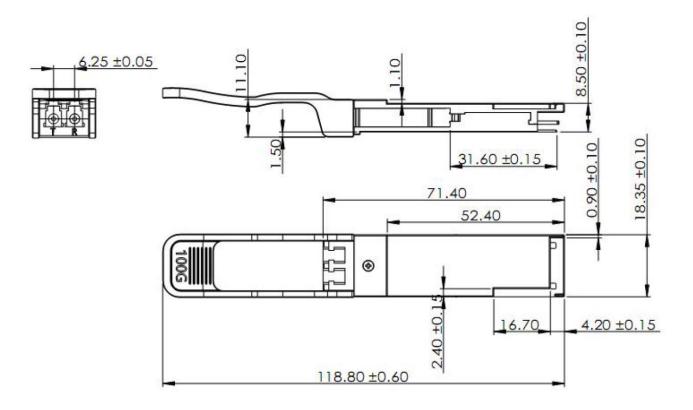
As defined by the QSFP28 MSA, Ficer's QSFP28 transceivers provide digital diagnostic functions via a 2-wire serial interface, which allows real-time access to the following operating parameters:

- Transceiver temperature
- Laser bias current
- Transmitted optical power
- Received optical power
- Transceiver supply voltage


It also provides a sophisticated system of alarm and warning flags, which may be used to alert end-users when particular operating parameters are outside of a factory-set normal range.

The operating and diagnostics information is monitored and reported by a Digital Diagnostics Controller (DDC) inside the transceiver, which is accessed through the 2-wire serial interface. When the serial protocol is activated, the serial clock signal (SCL pin) is generated by the host. The positive edge clocks data into the QSFP28 transceiver into those segments of its memory map that are not write-protected. The negative edge clocks data from the QSFP28 transceiver. The serial data signal (SDA pin) is bi-directional for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The memories are organized as a series of 8-bit data words that can be addressed individually or sequentially. The 2-wire serial interface provides sequential or random access to the 8 bit parameters, addressed from 000h to the maximum address of the memory.

For more detailed information including memory map definitions, please see the QSFP28 MSA Specification.


Digital Diagnostic Memory Map

SKU: 00C0K21

SKU: 00C0K21

Mechanical Dimensions

(All Dimensions are ±0.20mm Unless Otherwise Specified, Unit: mm)

Ordering Information

TEL+886-2-2898-3830

Part No.	Tx	Rx	Link	DDM	Temp.
FQ2S-K7-C13-10D	1311nm	1311nm	SMF 10km (with FEC)	Yes	0~70°C

Note: Distances are indicative only. To calculate a more precise link budget based on specific conditions in your application, please refer to the optical characteristics.